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Observed warming:
Land and Ocean annual temperature (°C)
(anomalies relative to 1851-1880)
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Jones et al. (2012); Morice et al. (2012) for temperature record, ENSO years from NOAA



Extent (Millions of square kilometers)

Arctic Sea Ice Extent
(area of ocean with at least 15% ice)
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Sea Level Change (cm)

Observed sea level change at top of range
projected in IPCC assessment reports

8l Tide gauges (Church and White (2011))
—  AVISO satellite altimeter
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Accelerating loss from ice-sheets
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A recent review revealed accelerating mass loss from both polar ice
sheets Greenland and Antarctia

Contributes 20% to total sea-level rise since 1992
Shepherd et al. 2012



Global Carbon Project: Emissions on the rise
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*2.6% up from 2011 to 2012
*58% above 1990 in 2012
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Warming projections: Heading towards 4°C?
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Current pledged actions September 2010:
virtually certain to exceed 2°C; 50% chance above 3°C

Lowest standardized emission scenario ran by climate models for IPCC AR5:
likely below 2°C (15% chance above 2°C; 60% above 1.5°C)

Low-emission scenario with negative CO> emissions
from upper half of literature range
in 2nd half of 215t Century

Business as usual:
likely to exceed 3°C

Effect of current
proposals

Geophysical
intertia
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Delays and time scales in the climate system’s
response to greenhouse-gas emissions

CO,concentration, temperature, and sea level
continue to rise long after emissions are reduced

Magnitude of response Time taken to reach
equilibrium

» Sea-level rise due to ice melting:
“  several millennia

CO, emissions peak g
0 to 100 years i |
PR Sea-level rise due to thermal
o expansion:

centuries to millennia

Temperature stabilization:
a few centuries

CO, stabilization:
100 to 300 years

CO, emissions
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How are temperature and sea level linked?

Temperature AT

H /
\ . adjustment timescale

centuries to millennia

a0 o initial linear regime
yat where dH/dt ~ AT Rahmstorf. Science 2007
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Sea Level reconstruction vs semi-empirical model
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Temp. anomaly (K)

Sea level anomaly (cm)

Validation for 20th century

Mann et al. (2008) temperature proxies with 1 o bound : : n
30 = 'KE11 proxy data (9-degree polynomial fit) with 1 & 2o bound S S ﬁf
O KE11 proxy data points I
JEO8 data with Chao et al. (2008) & Konikow (2011) correction | -
20| === JEO8 data ssatrend smoothed . A .
Semi-empirical fit with 90% confidence interval ; /] p/ 4
Semi-empirical forecast with 90% confidence interval : / ‘4 /
10": """"""""" o ,f____hﬁ‘k_f/ ,"'/' |
. . ot - . /
: by g — o el® €1 & s T . e g - I 4
: "y O _A DN i — DA R 7 .
Qs = = o = L B e : ’-,-0 6 -0 .. . o .‘ -4 HiLD [y _'"r!l't\ ru i e
: B = B _/m AP, - /oo . = —_ i ® 'ﬂ Tl N & S
- seoRe” o < L _ °m__ SHE ”! &
10k -~ G/ — P e ol mspmt L & nen g m g s 5o ke s R o e 3 - o
. o . o = _ o - - o =
" .._,. I o o - . B
000 _
20/ - --- e e (b)
X\ L\ N ’ i i i i i i i i i |
: ST 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Year

Bittermann et al.,

2013



Rate of Sea-level rise projections 215 century
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Schaeffer et al., 2012; Schellnhuber et al., 2012



Sea-level rise projections 215t century

125

100

75

50

25

Sea level (cm above 2000)

- es
- g'\\/\ed p‘

|IPCC SRES ATFI

Reference (close to SRES A1B)
Current Pledges

RCP3PD

~

-

Global sudden stop to emissions in 2016

_ -
- ‘a\e
_ /e“‘,daﬂ

-25
1900

9

CLIMATE®®
NALYTICS

1950

2000
Year

2050

2100

Schaeffer et al., 2012; Schellnhuber et al., 2012



CLIMATE®®
NALYTICS

Can sea level rise be held below 1m?
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The difference in sea-level rise between a stabilized 2°C and a “well below” 1.5°C scenario
is less than 10 cm by 2100, but rate of rise is very different by then, so that difference in

sea-level rise between scenarios diverges to over 1 m by 2300

Sea-level rise may be halted in 2300 for a “well below” 1.5°C scenario, in sharp contrast

to a 2°C stabilization scenario.
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Regional deviations from global SLR

wn
0.7x
0.6w

93 I

CLIMATE === = EE::

ANALYTICS P 1K Perrette et al., 2012; Schellnhuber et al., 2012



How are species affected by ocean acidificaton?

Taxa Response Mean Effect Not tested or too few studies
Survival _ Enhanced <25%
Calcification :] 95% Cl overlaps 0
Growth Reduced <25%
Photosynthesis B couced >25%
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How rapidly does acidification increase?
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Coral reefs projected “chemica
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Reefs in blue have a less-than-10% probability of experiencing a severe bleaching event and
live in areas with annual mean open ocean seawater aragonite saturation above 3.3. Orange
reefs are thermally stressed experiencing a severe bleaching event at least once every 10
years. Light blue reefs are chemically stressed (annual mean seawater aragonite saturation
below 3.3), and reefs in red are both thermally and chemically stressed
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Closing remarks

* Climate change poses a risk to ocean-based or
ocean-dependent systems through warming, sea-
level rise and acidification

e Several aspects (Backup Slides) not discussed
here, e.g.:
— Tropical cyclone intensity
— Weakening Thermohaline circulation

— Changes in patterns of variability in ocean,
atmosphere and combined (e.g. ENSO, NAO)
e Current emission trends, observations and
inadequacy of proposed emission reductions lead
to projected high risks
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Thank you

www.climateanalytics.org
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Backup slides

further information and “other
aspects” of climate change &
oceans
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Correlation between hurricane power
and tropical sea-surface temperatures

08 155
| 450
O 06 r
s 145 3
r_g 04 14.0 %
o =35 6
&5 g,
o 0.2 r —313-E
5 ] =
2 ool 25 5
g v 120 5
£ {15 €
F -0.2 -
- (4 N 10
-04 i 0.5
1920 1940 1960 1980 2000

Year

Figure 3 | Power dissipation index for North Atlantic tropical storms
linked to tropical sea surface temperature in the main development
region for Atlantic hurricanes. Red line denotes North Atlantic tropical
storms; blue line denotes tropical Atlantic sea surface temperature. For
comparison, the evolution of Northern Hemisphere mean temperature

from NASA Goddard Institute for Space Studies is also shown (dotted line).

Coumou and Rahmstorf (2012)



Thermohaline circulation
or “great conveyor belt”

Observations and model projections show weakening.
Affects SLR, plankton/fisheries, land climate



Consistent global warming signal in line with IPCC
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CO, emissions at record level
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Home > Newsroom and events > News » 2012 > May
Global carbon-dioxide emissions increase by 1.0 Gt in 2011 to RECENT NEWS

record high

24 May 2012

Global carbon-dioxide (CO2) emissions from fossil-fuel
combustion reached a record high of 31.6 gigatonnes (Gt)
in 2011, according to preliminary estimates from the
International Energy Agency (IEA). This represents an
increase of 1.0 Gt on 2010, or 3.2%. Coal accounted for
45% of fotal energy-related CO2 emissions in 2011,
followed by oil (35%) and natural gas (20%).

The 450 Scenario of the |IEA's World Energy Outlook
2071, which sets out an energy pathway consistent with a
50% chance of limiting the increase in the average global
temperature to 2°C, reguires CO2 emissions to peak at
32.6 Gt no later than 2017, ie just 1.0 Gt above 2011
levels. The 450 Scenaric sees a decoupling of CO2

Copyright: GraphicObsession

emissions from global GDP, but much still needs to be done to reach that geal as the rate of growth in CO2 emissions in
2011 exceeded that of global GDP. “The new data provide further evidence that the door to a 2°C trajectory is about to

close,” said IEA Chief Economist Fatih Birol.

A need for reform in India

Collaboration between |EA,
UNFCCC will lead to improved data
and analysis on climate Issues

Dutch astronaut visits |IEA after six
months in space

Sustainable energy is the focus of
an intermnational training event for
policy makers from Latin America
and the Caribbean

New edition of Key World Energy
Statistics offers a host of critical
figures for free

http://www.iea.org/newsroomandevents/news/2012/may/name,27216,en.html



(CO,) Carbon Dioxide (pmol mol ')

..and so is CO, concentration

Mauna Loa, Hawaii, United States (MLO)
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(&  The Emissions Gap Report 2012

UNEP A UNEP Synthesis Report

Core findings:

— 2010 global total emissions: 50 GtCO2e/yr (95% range: 45.6-54.6)
— Current “emissions gap” for 2°C (>66% chance) 8 to 13 GtCO2e/yr, depending on:

e unconditional/conditional pledges: 2 GtCO2e/yr improvement
* lenient/strict accounting rules: 3 GtCO2e/yr improvement

— Emissions gap increased by ca. 2 GtCO2e/yr relative to 2011 estimate
e due to updated BaUs for developing countries (higher expected emissions)
e due toinclusion and accounting for the effect of double counting of offsets

— 2020 emissions:
* inline with 2°C (>66% chance) remain at 44 GtCO2e/yr (41-47 GtCO2e/yr)
* inthe few 1.5°C scenarios emerging in literature: around 43 GtCO2e/yr
* Based on the pledges: 52-57 GtCO2e/yr, depending on conditionality and accounting rules

— Also “later action” pathways emerge in literature
* higher near-term emissions (lower near-term costs)
Higher technology dependence on any mitigation option (for example, CCS)
Higher long-term (and overall) costs
Higher pressure on future policy requirements (participation, climate vs water/biodiversity)
* Increased climatic risks: emission budget used more quickly, temperature rate and overshoot

— Highlights importance of energy efficiency to keep many options open
?
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&) The Emissions Gap Report 2012

A UNEP Synthesis Report

Likely (>66%) temperature increase (T) during 21st century associated with emission pathways
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Regional SLR projection time series
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Regional SLR projection time series
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Regional SLR projection time series
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